初一數學上冊復習教學知識點歸納總結
初一數學上冊復習教學知識點歸納總結
一:有理數知識網絡:概念、定義:
1、大于0的數叫做正數(positivenumber)。
2、在正數前面加上負號“-”的數叫做負數(negativenumber)。3、整數和分數統(tǒng)稱為有理數(rationalnumber)。
4、人們通常用一條直線上的點表示數,這條直線叫做數軸(numberaxis)。5、在直線上任取一個點表示數0,這個點叫做原點(origin)。
6、一般的,數軸上表示數a的點與原點的距離叫做數a的絕對值(absolutevalue)。7、由絕對值的定義可知:一個正數的絕對值是它本身;一個負數的絕對值是它的相反數;0的絕對值是0。
8、正數大于0,0大于負數,正數大于負數。9、兩個負數,絕對值大的反而小。10、有理數加法法則
(1)同號兩數相加,取相同的符號,并把絕對值相加。
(2)絕對值不相等的異號兩數相加,取絕對值較大的加數的負號,并用較大的絕對值減去較小的絕對值,互為相反數的兩個數相加得0。
(3)一個數同0相加,仍得這個數。
11、有理數的加法中,兩個數相加,交換交換加數的位置,和不變。
12、有理數的加法中,三個數相加,先把前兩個數相加,或者先把后兩個數相加,和不變。
13、有理數減法法則
減去一個數,等于加上這個數的相反數。14、有理數乘法法則
兩數相乘,同號得正,異號得負,并把絕對值向乘。任何數同0相乘,都得0。
15、有理數中仍然有:乘積是1的兩個數互為倒數。
16、一般的,有理數乘法中,兩個數相乘,交換因數的位置,積相等。17、三個數相乘,先把前兩個數相乘,或者先把后兩個數相乘,積相等。
18、一般地,一個數同兩個數的和相乘,等于把這個數分別同這兩個數相乘,再把積相加。
19、有理數除法法則
除以一個不等于0的數,等于乘這個數的倒數。
20、兩數相除,同號得正,異號得負,并把絕對值相除。0除以任何一個不等于0的數,都得0。
21、求n個相同因數的積的運算,叫做乘方,乘方的結果叫做冪(power)。在an中,a叫做底數(basenumber),n叫做指數(exponeht)
22、根據有理數的乘法法則可以得出
負數的奇次冪是負數,負數的偶次冪是正數。
顯然,正數的任何次冪都是正數,0的任何次冪都是0。23、做有理數混合運算時,應注意以下運算順序:(1)先乘方,再乘除,最后加減;(2)同級運算,從左到右進行;
(3)如有括號,先做括號內的運算,按小括號、中括號、大括號依次進行。
24、把一個大于10數表示成a×10n的形式(其中a是整數數位只有一位的數,n是正整數),使用的是科學計數法。
25、接近實際數字,但是與實際數字還是有差別,這個數是一個近似數(approximatenumber)。
26、從一個數的左邊的第一個非0數字起,到末尾數字止,所有的數字都是這個數的有效數字(significantdigit)
注:黑體字為重要部分二:整式的加減知識網絡:概念、定義:
1、都是數或字母的積的式子叫做單項式(monomial),單獨的一個數或一個字母也是單項式。
2、單項式中的數字因數叫做這個單項式的系數(coefficient)。3、一個單項式中,所有字母的指數的和叫做這個單項式的次數(degreeofamonomial)。4、幾個單項的和叫做多項式(polynomial),其中,每個單項式叫做多項式的項(term),不含字母的項叫做常數項(constantly
term)。
5、多項式里次數最高項的次數,叫做這個多項式的次數(degreeofapolynomial)。6、把多項式中的同類項合并成一項,叫做合并同類項。
合并同類項后,所得項的系數是合并前各同類項的系數的和,且字母部分不變。7、如果括號外的因數是正數,去括號后原括號內各項的符號與原來的符號相同;8、如果括號外的因數是負數,去括號后原括號內各項的符號與原來的符號相反。9、一般地,幾個整式相加減,如果有括號就先去括號,然后再合并同類項。三:一元一次方程知識網絡:概念、定義:
1、列方程時,要先設字母表示未知數,然后根據問題中的相等關系,寫出還有未知數的等式方程(equation)。
2、含有一個未知數(元),未知數的次數都是1,這樣的方程叫做一元一次方程(linearequationwithoneunknown)。
3、分析實際問題中的數量關系,利用其中的等量關系列出方程,是用數學解決實際問題的一種方法。
4、等式的性質1:等式兩邊加(或減)同一個數(或式子),結果仍相等。
5、等式的性質2:等式兩邊乘同一個數,或除以一個不為0的數,結果仍相等。6、把等式一邊的某項變號后移到另一邊,叫做移項。
7、應用:行程問題:s=v×t工程問題:工作總量=工作效率×時間盈虧問題:利潤=售價-成本利率=利潤÷成本×100%
售價=標價×折扣數×10%儲蓄利潤問題:利息=本金×利率×時間本息和=本金+利息三:圖形初步認識知識網絡:概念、定義:
1、我們把實物中抽象的各種圖形統(tǒng)稱為幾何圖形(geometricfigure)。
2、有些幾何圖形(如長方體、正方體、圓柱、圓錐、球等)的各部分不都在同一平面內,它們是立體圖形(solidfigure)。
3、有些幾何圖形(如線段、角、三角形、長方形、圓等)的各部分都在同一平面內,它們是平面圖形(planefigure)。
4、將由平面圖形圍成的立體圖形表面適當剪開,可以展開成平面圖形,這樣的平面圖形稱為相應立體圖形的展開圖(net)。
5、幾何體簡稱為體(solid)。6、包圍著體的是面(surface),面有平的面和曲的面兩種。7、面與面相交的地方形成線(line),線和線相交的地方是點(point)。8、點動成面,面動成線,線動成體。
9、經過探究可以得到一個基本事實:經過兩點有一條直線,并且只有一條直線。簡述為:兩點確定一條直線(公理)。
10、當兩條不同的直線有一個公共點時,我們就稱這兩條直線相交(intersection),這個公共點叫做它們的交點(pointofintersection)。
11、點M把線段AB分成相等的兩條線段AM和MB,點M叫做線段AB的中點(center)。12、經過比較,我們可以得到一個關于線段的基本事實:兩點的所有連線中,線段最短。簡單說成:兩點之間,線段最短。(公理)
13、連接兩點間的線段的長度,叫做這兩點的距離(distance)。14、角∠(angle)也是一種基本的幾何圖形。
15、把一個周角360等分,每一份就是1度(degree)的角,記作1°;把一度的角60等分,每一份叫做1分的角,記作1′;把1分的角60等分,每一份叫做1秒的角,記作1″。
16、從一個角的頂點出發(fā),把這個角分成相等的兩個角的射線,叫做這個角的平分線(angularbisector)。
17、如果兩個角的和等于90°(直角),就是說這兩個叫互為余角(complementaryangle),即其中的每一個角是另一個角的余角。18、如果兩個角的和等于180°(平角),就說這兩個角互為補角(supplementaryangle),即其中一個角是另一個角的補角19、等角的補角相等,等角的余角相等。
擴展閱讀:初一數學上冊復習教學知識點歸納總結
初一數學上冊復習教學知識點歸納總結
一:有理數知識網絡:概念、定義:
1、大于0的數叫做正數(positivenumber)。
2、在正數前面加上負號“-”的數叫做負數(negativenumber)。3、整數和分數統(tǒng)稱為有理數(rationalnumber)。
4、人們通常用一條直線上的點表示數,這條直線叫做數軸(numberaxis)。5、在直線上任取一個點表示數0,這個點叫做原點(origin)。
6、一般的,數軸上表示數a的點與原點的距離叫做數a的絕對值(absolutevalue)。
7、由絕對值的定義可知:一個正數的絕對值是它本身;一個負數的絕對值是它的相反數;0的絕對值是0。
8、正數大于0,0大于負數,正數大于負數。9、兩個負數,絕對值大的反而小。10、有理數加法法則
(1)同號兩數相加,取相同的符號,并把絕對值相加。
(2)絕對值不相等的異號兩數相加,取絕對值較大的加數的負號,并用較大的絕對值減去較小的絕對值,互為相反數的兩個數相加得0。(3)一個數同0相加,仍得這個數。
11、有理數的加法中,兩個數相加,交換交換加數的位置,和不變。
12、有理數的加法中,三個數相加,先把前兩個數相加,或者先把后兩個數相加,和不變。
13、有理數減法法則
減去一個數,等于加上這個數的相反數。14、有理數乘法法則
兩數相乘,同號得正,異號得負,并把絕對值向乘。任何數同0相乘,都得0。
15、有理數中仍然有:乘積是1的兩個數互為倒數。
16、一般的,有理數乘法中,兩個數相乘,交換因數的位置,積相等。17、三個數相乘,先把前兩個數相乘,或者先把后兩個數相乘,積相等。18、一般地,一個數同兩個數的和相乘,等于把這個數分別同這兩個數相乘,再把積相加。
19、有理數除法法則
除以一個不等于0的數,等于乘這個數的倒數。
20、兩數相除,同號得正,異號得負,并把絕對值相除。0除以任何一個不等于0的數,都得0。
21、求n個相同因數的積的運算,叫做乘方,乘方的結果叫做冪(power)。在an中,a叫做底數(basenumber),n叫做指數(exponeht)22、根據有理數的乘法法則可以得出
負數的奇次冪是負數,負數的偶次冪是正數。顯然,正數的任何次冪都是正數,0的任何次冪都是0。23、做有理數混合運算時,應注意以下運算順序:(1)先乘方,再乘除,最后加減;(2)同級運算,從左到右進行;
(3)如有括號,先做括號內的運算,按小括號、中括號、大括號依次進行。24、把一個大于10數表示成a×10n的形式(其中a是整數數位只有一位的數,n是正整數),使用的是科學計數法。
25、接近實際數字,但是與實際數字還是有差別,這個數是一個近似數(approximatenumber)。
26、從一個數的左邊的第一個非0數字起,到末尾數字止,所有的數字都是這個數的有效數字(significantdigit)
注:黑體字為重要部分二:整式的加減知識網絡:概念、定義:
1、都是數或字母的積的式子叫做單項式(monomial),單獨的一個數或一個字母也是單項式。
2、單項式中的數字因數叫做這個單項式的系數(coefficient)。
3、一個單項式中,所有字母的指數的和叫做這個單項式的次數(degreeofamonomial)。
4、幾個單項的和叫做多項式(polynomial),其中,每個單項式叫做多項式的項(term),不含字母的項叫做常數項(constantlyterm)。
5、多項式里次數最高項的次數,叫做這個多項式的次數(degreeofapolynomial)。
6、把多項式中的同類項合并成一項,叫做合并同類項。
合并同類項后,所得項的系數是合并前各同類項的系數的和,且字母部分不變。7、如果括號外的因數是正數,去括號后原括號內各項的符號與原來的符號相同;8、如果括號外的因數是負數,去括號后原括號內各項的符號與原來的符號相反。9、一般地,幾個整式相加減,如果有括號就先去括號,然后再合并同類項。三:一元一次方程知識網絡:概念、定義:
1、列方程時,要先設字母表示未知數,然后根據問題中的相等關系,寫出還有未知數的等式方程(equation)。
2、含有一個未知數(元),未知數的次數都是1,這樣的方程叫做一元一次方程(linearequationwithoneunknown)。
3、分析實際問題中的數量關系,利用其中的等量關系列出方程,是用數學解決實際問題的一種方法。
4、等式的性質1:等式兩邊加(或減)同一個數(或式子),結果仍相等。5、等式的性質2:等式兩邊乘同一個數,或除以一個不為0的數,結果仍相等。6、把等式一邊的某項變號后移到另一邊,叫做移項。
7、應用:行程問題:s=v×t工程問題:工作總量=工作效率×時間盈虧問題:利潤=售價-成本利率=利潤÷成本×100%
售價=標價×折扣數×10%儲蓄利潤問題:利息=本金×利率×時間本息和=本金+利息三:圖形初步認識知識網絡:概念、定義:
1、我們把實物中抽象的各種圖形統(tǒng)稱為幾何圖形(geometricfigure)。
2、有些幾何圖形(如長方體、正方體、圓柱、圓錐、球等)的各部分不都在同一平面內,它們是立體圖形(solidfigure)。
3、有些幾何圖形(如線段、角、三角形、長方形、圓等)的各部分都在同一平面內,它們是平面圖形(planefigure)。
4、將由平面圖形圍成的立體圖形表面適當剪開,可以展開成平面圖形,這樣的平面圖形稱為相應立體圖形的展開圖(net)。5、幾何體簡稱為體(solid)。
6、包圍著體的是面(surface),面有平的面和曲的面兩種。
7、面與面相交的地方形成線(line),線和線相交的地方是點(point)。8、點動成面,面動成線,線動成體。
9、經過探究可以得到一個基本事實:經過兩點有一條直線,并且只有一條直線。簡述為:兩點確定一條直線(公理)。
10、當兩條不同的直線有一個公共點時,我們就稱這兩條直線相交
(intersection),這個公共點叫做它們的交點(pointofintersection)。
11、點M把線段AB分成相等的兩條線段AM和MB,點M叫做線段AB的中點(center)。
12、經過比較,我們可以得到一個關于線段的基本事實:兩點的所有連線中,線段最短。簡單說成:兩點之間,線段最短。(公理)
13、連接兩點間的線段的長度,叫做這兩點的距離(distance)。14、角∠(angle)也是一種基本的幾何圖形。
15、把一個周角360等分,每一份就是1度(degree)的角,記作1°;把一度的角60等分,每一份叫做1分的角,記作1′;把1分的角60等分,每一份叫做1秒的角,記作1″。
16、從一個角的頂點出發(fā),把這個角分成相等的兩個角的射線,叫做這個角的平分線(angularbisector)。17、如果兩個角的和等于90°(直角),就是說這兩個叫互為余角(complementaryangle),即其中的每一個角是另一個角的余角。18、如果兩個角的和等于180°(平角),就說這兩個角互為補角(supplementaryangle),即其中一個角是另一個角的補角19、等角的補角相等,等角的余角相等
友情提示:本文中關于《初一數學上冊復習教學知識點歸納總結》給出的范例僅供您參考拓展思維使用,初一數學上冊復習教學知識點歸納總結:該篇文章建議您自主創(chuàng)作。
來源:網絡整理 免責聲明:本文僅限學習分享,如產生版權問題,請聯(lián)系我們及時刪除。