高中數(shù)學(xué)選修2-1知識(shí)點(diǎn)總結(jié)(考前復(fù)習(xí)必備)
高二數(shù)學(xué)選修2-1知識(shí)點(diǎn)
1、命題:用語(yǔ)言、符號(hào)或式子表達(dá)的,可以判斷真假的陳述句.真命題:判斷為真的語(yǔ)句.假命題:判斷為假的語(yǔ)句.2、“若p,則q”形式的命題中的p稱(chēng)為命題的條件,q稱(chēng)為命題的結(jié)論.
3、對(duì)于兩個(gè)命題,如果一個(gè)命題的條件和結(jié)論分別是另一個(gè)命題的結(jié)論和條件,則這兩個(gè)命題稱(chēng)為互逆命題.其中一個(gè)命題稱(chēng)為原命題,另一個(gè)稱(chēng)為原命題的逆命題.若原命題為“若p,則q”,它的逆命題為“若q,則p”.
4、對(duì)于兩個(gè)命題,如果一個(gè)命題的條件和結(jié)論恰好是另一個(gè)命題的條件的否定和結(jié)論的否定,則這兩個(gè)命題稱(chēng)為互否命題.中一個(gè)命題稱(chēng)為原命題,另一個(gè)稱(chēng)為原命題的否命題.若原命題為“若p,則q”,則它的否命題為“若p,則q”.
5、對(duì)于兩個(gè)命題,如果一個(gè)命題的條件和結(jié)論恰好是另一個(gè)命題的結(jié)論的否定和條件的否定,則這兩個(gè)命題稱(chēng)為互為逆否命題.其中一個(gè)命題稱(chēng)為原命題,另一個(gè)稱(chēng)為原命題的逆否命題.若原命題為“若p,則q”,則它的否命題為“若q,則p”.6、四種命題的真假性:
原命題逆命題否命題逆否命題
真真真真真假假真假真真真假假假假
四種命題的真假性之間的關(guān)系:
全稱(chēng)命題“對(duì)中任意一個(gè)x,有px成立”,記作“x,px”.短語(yǔ)“存在一個(gè)”、“至少有一個(gè)”在邏輯中通常稱(chēng)為存在量詞,用“”表示.含有存在量詞的命題稱(chēng)為特稱(chēng)命題.
特稱(chēng)命題“存在中的一個(gè)x,使px成立”,記作“x,px”.
10、全稱(chēng)命題p:x,px,它的否定p:x,px.全稱(chēng)命題的否定是特稱(chēng)命題.
11、平面內(nèi)與兩個(gè)定點(diǎn)F)的點(diǎn)的軌跡稱(chēng)為橢圓.這1,F(xiàn)2的距離之和等于常數(shù)(大于F1F2兩個(gè)定點(diǎn)稱(chēng)為橢圓的焦點(diǎn),兩焦點(diǎn)的距離稱(chēng)為橢圓的焦距.12、橢圓的幾何性質(zhì):焦點(diǎn)的位置焦點(diǎn)在x軸上
焦點(diǎn)在y軸上
圖形
標(biāo)準(zhǔn)方程范圍頂點(diǎn)軸長(zhǎng)焦點(diǎn)焦距對(duì)稱(chēng)性離心率準(zhǔn)線(xiàn)方程
x2y21ab0a2b2axa且byby2x21ab0a2b2bxb且aya
1兩個(gè)命題互為逆否命題,它們有相同的真假性;
2兩個(gè)命題為互逆命題或互否命題,它們的真假性沒(méi)有關(guān)系.
7、若pq,則p是q的充分條件,q是p的必要條件.若pq,則p是q的充要條件(充分必要條件).
8、用聯(lián)結(jié)詞“且”把命題p和命題q聯(lián)結(jié)起來(lái),得到一個(gè)新命題,記作pq.
當(dāng)p、q都是真命題時(shí),pq是真命題;當(dāng)p、q兩個(gè)命題中有一個(gè)命題是假命題時(shí),pq是假命題.
用聯(lián)結(jié)詞“或”把命題p和命題q聯(lián)結(jié)起來(lái),得到一個(gè)新命題,記作pq.
當(dāng)p、q兩個(gè)命題中有一個(gè)命題是真命題時(shí),pq是真命題;當(dāng)p、q兩個(gè)命題都是假命題時(shí),pq是假命題.
對(duì)一個(gè)命題p全盤(pán)否定,得到一個(gè)新命題,記作p.
若p是真命題,則p必是假命題;若p是假命題,則p必是真命題.
9、短語(yǔ)“對(duì)所有的”、“對(duì)任意一個(gè)”在邏輯中通常稱(chēng)為全稱(chēng)量詞,用“”表示.含有全稱(chēng)量詞的命題稱(chēng)為全稱(chēng)命題.
1a,0、2a,010,b、20,b
10,a、20,a1b,0、2b,0
短軸的長(zhǎng)2b長(zhǎng)軸的長(zhǎng)2a
F1c,0、F2c,0F10,c、F20,c
F1F22cc2a2b2
關(guān)于x軸、y軸、原點(diǎn)對(duì)稱(chēng)
cb2e120e1aaa2x
ca2y
c13、設(shè)是橢圓上任一點(diǎn),點(diǎn)到F點(diǎn)到F2對(duì)應(yīng)準(zhǔn)線(xiàn)的距離為d2,1對(duì)應(yīng)準(zhǔn)線(xiàn)的距離為d1,
第1頁(yè)共5頁(yè)則
F1d1F2d2e.
漸近線(xiàn)方程
ybxayaxb16、實(shí)軸和虛軸等長(zhǎng)的雙曲線(xiàn)稱(chēng)為等軸雙曲線(xiàn).
17、設(shè)是雙曲線(xiàn)上任一點(diǎn),點(diǎn)到F點(diǎn)到F2對(duì)應(yīng)準(zhǔn)線(xiàn)的距離為d2,1對(duì)應(yīng)準(zhǔn)線(xiàn)的距離為d1,則
14、平面內(nèi)與兩個(gè)定點(diǎn)F)的點(diǎn)的軌跡稱(chēng)為1,F(xiàn)2的距離之差的絕對(duì)值等于常數(shù)(小于F1F2雙曲線(xiàn).這兩個(gè)定點(diǎn)稱(chēng)為雙曲線(xiàn)的焦點(diǎn),兩焦點(diǎn)的距離稱(chēng)為雙曲線(xiàn)的焦距.
15、雙曲線(xiàn)的幾何性質(zhì):
焦點(diǎn)在y軸上焦點(diǎn)的位置焦點(diǎn)在x軸上
F1d1F2d2e.
18、平面內(nèi)與一個(gè)定點(diǎn)F和一條定直線(xiàn)l的距離相等的點(diǎn)的軌跡稱(chēng)為拋物線(xiàn).定點(diǎn)F稱(chēng)為拋
物線(xiàn)的焦點(diǎn),定直線(xiàn)l稱(chēng)為拋物線(xiàn)的準(zhǔn)線(xiàn).
19、過(guò)拋物線(xiàn)的焦點(diǎn)作垂直于對(duì)稱(chēng)軸且交拋物線(xiàn)于、兩點(diǎn)的線(xiàn)段,稱(chēng)為拋物線(xiàn)的“通徑”,即2p.20、焦半徑公式:
圖形
標(biāo)準(zhǔn)方程范圍頂點(diǎn)軸長(zhǎng)焦點(diǎn)焦距對(duì)稱(chēng)性離心率準(zhǔn)線(xiàn)方程
x2y221a0,b02abxa或xa,yRy2x221a0,b02abya或ya,xR
p;2p若點(diǎn)x0,y0在拋物線(xiàn)y22pxp0上,焦點(diǎn)為F,則Fx0;
2p2若點(diǎn)x0,y0在拋物線(xiàn)x2pyp0上,焦點(diǎn)為F,則Fy0;
2p2若點(diǎn)x0,y0在拋物線(xiàn)x2pyp0上,焦點(diǎn)為F,則Fy0.
2若點(diǎn)x0,y0在拋物線(xiàn)y22pxp0上,焦點(diǎn)為F,則Fx0
21、拋物線(xiàn)的幾何性質(zhì):標(biāo)準(zhǔn)方程
1a,0、2a,0F1c,0、F2c,0
10,a、20,aF10,c、F20,c
y22pxy22pxx22py
虛軸的長(zhǎng)2b實(shí)軸的長(zhǎng)2a
p0p0p0x22pyp0
F1F22cc2a2b2
關(guān)于x軸、y軸對(duì)稱(chēng),關(guān)于原點(diǎn)中心對(duì)稱(chēng)
圖形
cb2e12e1aaa2x
ca2y
c頂點(diǎn)
0,0
x軸
y軸
對(duì)稱(chēng)軸
第2頁(yè)共5頁(yè)焦點(diǎn)
pF,02xp2pF,02xp2pF0,
2yp2pF0,
2yp22求兩個(gè)向量差的運(yùn)算稱(chēng)為向量的減法,它遵循三角
形法則.即:在空間任取一點(diǎn),作a,b,則ab.
24、實(shí)數(shù)與空間向量a的乘積a是一個(gè)向量,稱(chēng)為向量的數(shù)乘運(yùn)算.當(dāng)0時(shí),a與a方
準(zhǔn)線(xiàn)方程
離心率
e1向相同;當(dāng)0時(shí),a與a方向相反;當(dāng)0時(shí),a為零向量,記為0.a(chǎn)的長(zhǎng)度是ay0
y0的長(zhǎng)度的
范圍
x0x0
倍.
22、空間向量的概念:
25、設(shè),為實(shí)數(shù),a,b是空間任意兩個(gè)向量,則數(shù)乘運(yùn)算滿(mǎn)足分配律及結(jié)合律.
1在空間,具有大小和方向的量稱(chēng)為空間向量.
2向量可用一條有向線(xiàn)段來(lái)表示.有向線(xiàn)段的長(zhǎng)度表示向量的大小,箭頭所指的方向表示向量
的方向.
分配律:abab;結(jié)合律:aa.
26、如果表示空間的有向線(xiàn)段所在的直線(xiàn)互相平行或重合,則這些向量稱(chēng)為共線(xiàn)向量或平行向量,并規(guī)定零向量與任何向量都共線(xiàn).
,記作.3向量的大小稱(chēng)為向量的模(或長(zhǎng)度)
27、向量共線(xiàn)的充要條件:對(duì)于空間任意兩個(gè)向量a,bb0,a//b的充要條件是存在實(shí)
4模(或長(zhǎng)度)為0的向量稱(chēng)為零向量;模為1的向量稱(chēng)為單位向量.5與向量a長(zhǎng)度相等且方向相反的向量稱(chēng)為a的相反向量,記作a.6方向相同且模相等的向量稱(chēng)為相等向量.
23、空間向量的加法和減法:
它遵循平行1求兩個(gè)向量和的運(yùn)算稱(chēng)為向量的加法,
四邊形法則.即:在空間以同一點(diǎn)為起點(diǎn)的兩個(gè)已
數(shù),使ab.
28、平行于同一個(gè)平面的向量稱(chēng)為共面向量.
29、向量共面定理:空間一點(diǎn)位于平面C內(nèi)的充要條件是存在有序?qū)崝?shù)對(duì)x,y,使
或?qū)臻g任一定點(diǎn),有或若四點(diǎn),,,xyC;xyC;
C共面,則xyzCxyz1.
30、已知兩個(gè)非零向量a和b,在空間任取一點(diǎn),作a,b,則稱(chēng)為向
量a,b的夾角,記作a,b.兩個(gè)向量夾角的取值范圍是:a,b0,.
知向量a、b為鄰邊作平行四邊形C,則以起
點(diǎn)的對(duì)角線(xiàn)C就是a與b的和,這種求向量和的方
法,稱(chēng)為向量加法的平行四邊形法則.
aa31、對(duì)于兩個(gè)非零向量和b,若a,b,則向量,b互相垂直,記作ab.
2第3頁(yè)共5頁(yè)a,b稱(chēng)為a,b的數(shù)量積,記作ab.即32、已知兩個(gè)非零向量a和b,則abcosababcosa,b.零向量與任何向量的數(shù)量積為0.
33、ab等于a的長(zhǎng)度a與b在a的方向上的投影bcosa,b的乘積.34、若a,b為非零向量,e為單位向量,則有1eaaeacosa,e;
39、設(shè)e1,e2,e3為有公共起點(diǎn)的三個(gè)兩兩垂直的單位向量(稱(chēng)它們?yōu)閱挝徽换祝,以e1,e2,e3的公共起點(diǎn)為原點(diǎn),分別以e1,e2,e3的方向?yàn)閤軸,y軸,z軸的正方向建立空
間直角坐標(biāo)系xyz.則對(duì)于空間任意一個(gè)向量p,一定可以把它平移,使它的起點(diǎn)與原點(diǎn)重
合,得到向量p.存在有序?qū)崝?shù)組x,y,z,使得pxe1ye2ze3.把x,y,z稱(chēng)作向量p在單位正交基底e1,e2,e3下的坐標(biāo),記作px,y,z.此時(shí),向量p的坐標(biāo)是點(diǎn)
2aba與b同向,aaa,aaa;2abab0;3ababa與b反向ab4cosa,b;5abab.
ab在空間直角坐標(biāo)系xyz中的坐標(biāo)x,y,z.
40、設(shè)ax1,y1,z1,bx2,y2,z2,則1abx1x2,y1y2,z1z2.2abx1x2,y1y2,z1z2.
35、向量數(shù)乘積的運(yùn)算律:1abba;2ababab;
3abcacbc.
3ax1,y1,z1.
4abx1x2y1y2z1z2.
5若a、b為非零向量,則abab0x1x2y1y2z1z20.
36、若i,j,k是空間三個(gè)兩兩垂直的向量,則對(duì)空間任一向量p,存在有序?qū)崝?shù)組x,y,z,
使得pxiyjzk,稱(chēng)xi,yj,zk為向量p在i,j,k上的分量.
37、空間向量基本定理:若三個(gè)向量a,b,c不共面,則對(duì)空間任一向量p,存在實(shí)數(shù)組
6若b0,則a//babx1x2,y1y2,z1z2.
aaax12y12z12.7x1x2y1y2z1z2abcosa,b.8222222abx1y1z1x2y2z2x,y,z,使得pxaybzc.
38、若三個(gè)向量a,b,c不共面,則所有空間向量組成的集合是
ppxaybzc,x,y,zR.這個(gè)集合可看作是由向量a,b,c生成的,
9x1,y1,z1,x2,y2,z2,則d量稱(chēng)為點(diǎn)的位置向量.
x2x1y2y1z2z1222.
aa,b,c稱(chēng)為空間的一個(gè)基底,,b,c稱(chēng)為基向量.空間任意三個(gè)不共面的向量都可以構(gòu)
41、在空間中,取一定點(diǎn)作為基點(diǎn),那么空間中任意一點(diǎn)的位置可以用向量來(lái)表示.向
成空間的一個(gè)基底.
第4頁(yè)共5頁(yè)42、空間中任意一條直線(xiàn)l的位置可以由l上一個(gè)定點(diǎn)以及一個(gè)定方向確定.點(diǎn)是直線(xiàn)l上
一點(diǎn),向量a表示直線(xiàn)l的方向向量,則對(duì)于直線(xiàn)l上的任意一點(diǎn),有ta,這樣點(diǎn)和
向量a不僅可以確定直線(xiàn)l的位置,還可以具體表示出直線(xiàn)l上的任意一點(diǎn).
43、空間中平面的位置可以由內(nèi)的兩條相交直線(xiàn)來(lái)確定.設(shè)這兩條相交直線(xiàn)相交于點(diǎn),
它們的方向向量分別為a,b.為平面上任意一點(diǎn),存在有序?qū)崝?shù)對(duì)x,y,使得
xayb,這樣點(diǎn)與向量a,b就確定了平面的位置.
44、直線(xiàn)l垂直,取直線(xiàn)l的方向向量a,則向量a稱(chēng)為平面的法向量.
45、若空間不重合兩條直線(xiàn)a,b的方向向量分別為a,b,則a//ba//b
51、點(diǎn)與點(diǎn)之間的距離可以轉(zhuǎn)化為兩點(diǎn)對(duì)應(yīng)向量的模計(jì)算.
52、在直線(xiàn)l上找一點(diǎn),過(guò)定點(diǎn)且垂直于直線(xiàn)l的向量為n,則定點(diǎn)到直線(xiàn)l的距離為
ndcos,n.
n53、點(diǎn)是平面外一點(diǎn),是平面內(nèi)的一定點(diǎn),n為平面的一個(gè)法向量,則點(diǎn)到平面
n的距離為dcos,n.
nabR,ababab0.
46、若直線(xiàn)a的方向向量為a,平面的法向量為n,且a,則a//a//
anan0,aaa//nan.
47、若空間不重合的兩個(gè)平面,的法向量分別為a,b,則//a//b
ab,abab0.
48、設(shè)異面直線(xiàn)a,b的夾角為,方向向量為a,b,其夾角為,則有
abcoscos.
ab49、設(shè)直線(xiàn)l的方向向量為l,平面的法向量為n,l與所成的角為,l與n的夾角為,
ln則有sincos.
ln50、設(shè)n1,n2是二面角l的兩個(gè)面,的法向量,則向量n1,n2的夾角(或其補(bǔ)角)
n1n2就是二面角的平面角的大小.若二面角l的平面角為,則cos.
n1n2第5頁(yè)共5頁(yè)
擴(kuò)展閱讀:高中數(shù)學(xué)選修2-1知識(shí)點(diǎn)總結(jié)(考前復(fù)習(xí)必備)
高二數(shù)學(xué)選修2-1知識(shí)點(diǎn)
1、命題:用語(yǔ)言、符號(hào)或式子表達(dá)的,可以判斷真假的陳述句.真命題:判斷為真的語(yǔ)句.假命題:判斷為假的語(yǔ)句.2、“若p,則q”形式的命題中的p稱(chēng)為命題的條件,q稱(chēng)為命題的結(jié)論.
3、對(duì)于兩個(gè)命題,如果一個(gè)命題的條件和結(jié)論分別是另一個(gè)命題的結(jié)論和條件,則這兩個(gè)命題稱(chēng)為互逆命題.其中一個(gè)命題稱(chēng)為原命題,另一個(gè)稱(chēng)為原命題的逆命題.若原命題為“若p,則q”,它的逆命題為“若q,則p”.
4、對(duì)于兩個(gè)命題,如果一個(gè)命題的條件和結(jié)論恰好是另一個(gè)命題的條件的否定和結(jié)論的否定,則這兩個(gè)命題稱(chēng)為互否命題.中一個(gè)命題稱(chēng)為原命題,另一個(gè)稱(chēng)為原命題的否命題.若原命題為“若p,則q”,則它的否命題為“若p,則q”.
5、對(duì)于兩個(gè)命題,如果一個(gè)命題的條件和結(jié)論恰好是另一個(gè)命題的結(jié)論的否定和條件的否定,則這兩個(gè)命題稱(chēng)為互為逆否命題.其中一個(gè)命題稱(chēng)為原命題,另一個(gè)稱(chēng)為原命題的逆否命題.若原命題為“若p,則q”,則它的否命題為“若q,則p”.6、四種命題的真假性:
原命題逆命題否命題逆否命題
真真真真真假假真假真真真假假假假
四種命題的真假性之間的關(guān)系:
全稱(chēng)命題“對(duì)中任意一個(gè)x,有px成立”,記作“x,px”.短語(yǔ)“存在一個(gè)”、“至少有一個(gè)”在邏輯中通常稱(chēng)為存在量詞,用“”表示.含有存在量詞的命題稱(chēng)為特稱(chēng)命題.
特稱(chēng)命題“存在中的一個(gè)x,使px成立”,記作“x,px”.
10、全稱(chēng)命題p:x,px,它的否定p:x,px.全稱(chēng)命題的否定是特稱(chēng)命題.
11、平面內(nèi)與兩個(gè)定點(diǎn)F1,F(xiàn)2的距離之和等于常數(shù)(大于F1F2)的點(diǎn)的軌跡稱(chēng)為橢圓.這兩個(gè)定點(diǎn)稱(chēng)為橢圓的焦點(diǎn),兩焦點(diǎn)的距離稱(chēng)為橢圓的焦距.12、橢圓的幾何性質(zhì):焦點(diǎn)的位置焦點(diǎn)在x軸上
焦點(diǎn)在y軸上
圖形
標(biāo)準(zhǔn)方程范圍頂點(diǎn)軸長(zhǎng)焦點(diǎn)焦距對(duì)稱(chēng)性離心率準(zhǔn)線(xiàn)方程
x2y21ab0a2b2axa且byb1a,0、2a,010,b、20,b
y2x21ab0a2b2bxb且aya10,a、20,a1b,0、2b,0
1兩個(gè)命題互為逆否命題,它們有相同的真假性;
2兩個(gè)命題為互逆命題或互否命題,它們的真假性沒(méi)有關(guān)系.
7、若pq,則p是q的充分條件,q是p的必要條件.若pq,則p是q的充要條件(充分必要條件).
8、用聯(lián)結(jié)詞“且”把命題p和命題q聯(lián)結(jié)起來(lái),得到一個(gè)新命題,記作pq.
當(dāng)p、q都是真命題時(shí),pq是真命題;當(dāng)p、q兩個(gè)命題中有一個(gè)命題是假命題時(shí),pq是假命題.
用聯(lián)結(jié)詞“或”把命題p和命題q聯(lián)結(jié)起來(lái),得到一個(gè)新命題,記作pq.
當(dāng)p、q兩個(gè)命題中有一個(gè)命題是真命題時(shí),pq是真命題;當(dāng)p、q兩個(gè)命題都是假命題時(shí),pq是假命題.
對(duì)一個(gè)命題p全盤(pán)否定,得到一個(gè)新命題,記作p.
若p是真命題,則p必是假命題;若p是假命題,則p必是真命題.
9、短語(yǔ)“對(duì)所有的”、“對(duì)任意一個(gè)”在邏輯中通常稱(chēng)為全稱(chēng)量詞,用“”表示.含有全稱(chēng)量詞的命題稱(chēng)為全稱(chēng)命題.
短軸的長(zhǎng)2b長(zhǎng)軸的長(zhǎng)2a
F1c,0、F2c,0F10,c、F20,c
F1F22cc2a2b2
關(guān)于x軸、y軸、原點(diǎn)對(duì)稱(chēng)
cb2e120e1aaa2x
ca2y
c13、設(shè)是橢圓上任一點(diǎn),點(diǎn)到F1對(duì)應(yīng)準(zhǔn)線(xiàn)的距離為d1,點(diǎn)到F2對(duì)應(yīng)準(zhǔn)線(xiàn)的距離為d2,
第1頁(yè)共5頁(yè)
則F1d1F2d2e.
漸近線(xiàn)方程
ybxayaxb16、實(shí)軸和虛軸等長(zhǎng)的雙曲線(xiàn)稱(chēng)為等軸雙曲線(xiàn).
17、設(shè)是雙曲線(xiàn)上任一點(diǎn),點(diǎn)到F1對(duì)應(yīng)準(zhǔn)線(xiàn)的距離為d1,點(diǎn)到F2對(duì)應(yīng)準(zhǔn)線(xiàn)的距離為d2,則
14、平面內(nèi)與兩個(gè)定點(diǎn)F1,F(xiàn)2的距離之差的絕對(duì)值等于常數(shù)(小于F1F2)的點(diǎn)的軌跡稱(chēng)為雙曲線(xiàn).這兩個(gè)定點(diǎn)稱(chēng)為雙曲線(xiàn)的焦點(diǎn),兩焦點(diǎn)的距離稱(chēng)為雙曲線(xiàn)的焦距.
15、雙曲線(xiàn)的幾何性質(zhì):
焦點(diǎn)在y軸上焦點(diǎn)的位置焦點(diǎn)在x軸上
F1d1F2d2e.
18、平面內(nèi)與一個(gè)定點(diǎn)F和一條定直線(xiàn)l的距離相等的點(diǎn)的軌跡稱(chēng)為拋物線(xiàn).定點(diǎn)F稱(chēng)為拋
物線(xiàn)的焦點(diǎn),定直線(xiàn)l稱(chēng)為拋物線(xiàn)的準(zhǔn)線(xiàn).
19、過(guò)拋物線(xiàn)的焦點(diǎn)作垂直于對(duì)稱(chēng)軸且交拋物線(xiàn)于、兩點(diǎn)的線(xiàn)段,稱(chēng)為拋物線(xiàn)的“通徑”,即2p.20、焦半徑公式:
圖形
標(biāo)準(zhǔn)方程范圍頂點(diǎn)軸長(zhǎng)焦點(diǎn)焦距對(duì)稱(chēng)性離心率準(zhǔn)線(xiàn)方程
x2y221a0,b02abxa或xa,yR1a,0、2a,0F1c,0、F2c,0
y2x221a0,b02abya或ya,xR10,a、20,aF10,c、F20,c
p;2p2若點(diǎn)x0,y0在拋物線(xiàn)y2pxp0上,焦點(diǎn)為F,則Fx0;
2p2若點(diǎn)x0,y0在拋物線(xiàn)x2pyp0上,焦點(diǎn)為F,則Fy0;
2p2若點(diǎn)x0,y0在拋物線(xiàn)x2pyp0上,焦點(diǎn)為F,則Fy0.
2若點(diǎn)x0,y0在拋物線(xiàn)y2pxp0上,焦點(diǎn)為F,則Fx02
21、拋物線(xiàn)的幾何性質(zhì):標(biāo)準(zhǔn)方程
y22pxy22pxx22pyx22py
虛軸的長(zhǎng)2b實(shí)軸的長(zhǎng)2a
p0p0p0
p0F1F22cc2a2b2
關(guān)于x軸、y軸對(duì)稱(chēng),關(guān)于原點(diǎn)中心對(duì)稱(chēng)
圖形
cb2e12e1aa頂點(diǎn)
0,0
x軸
y軸
a2x
ca2y
c對(duì)稱(chēng)軸
第2頁(yè)共5頁(yè)
焦點(diǎn)
pF,02pF,02pF0,2pF0,
22求兩個(gè)向量差的運(yùn)算稱(chēng)為向量的減法,它遵循三角
形法則.即:在空間任取一點(diǎn),作a,b,則ab.
24、實(shí)數(shù)與空間向量a的乘積a是一個(gè)向量,稱(chēng)為向量的數(shù)乘運(yùn)算.當(dāng)0時(shí),a與a方
準(zhǔn)線(xiàn)方程
xp2xp2yp2yp2離心率e1
向相同;當(dāng)0時(shí),a與a方向相反;當(dāng)0時(shí),a為零向量,記為0.a(chǎn)的長(zhǎng)度是ay0
y0的長(zhǎng)度的倍.
范圍x0x0
22、空間向量的概念:
25、設(shè),為實(shí)數(shù),a,b是空間任意兩個(gè)向量,則數(shù)乘運(yùn)算滿(mǎn)足分配律及結(jié)合律.
分配律:abab;結(jié)合律:aa.
1在空間,具有大小和方向的量稱(chēng)為空間向量.
2向量可用一條有向線(xiàn)段來(lái)表示.有向線(xiàn)段的長(zhǎng)度表示向量的大小,箭頭所指的方向表示向量
的方向.
26、如果表示空間的有向線(xiàn)段所在的直線(xiàn)互相平行或重合,則這些向量稱(chēng)為共線(xiàn)向量或平行向量,并規(guī)定零向量與任何向量都共線(xiàn).
,記作.3向量的大小稱(chēng)為向量的模(或長(zhǎng)度)
27、向量共線(xiàn)的充要條件:對(duì)于空間任意兩個(gè)向量a,bb0,a//b的充要條件是存在實(shí)
4模(或長(zhǎng)度)為0的向量稱(chēng)為零向量;模為1的向量稱(chēng)為單位向量.5與向量a長(zhǎng)度相等且方向相反的向量稱(chēng)為a的相反向量,記作a.6方向相同且模相等的向量稱(chēng)為相等向量.
23、空間向量的加法和減法:
它遵循平行1求兩個(gè)向量和的運(yùn)算稱(chēng)為向量的加法,
四邊形法則.即:在空間以同一點(diǎn)為起點(diǎn)的兩個(gè)已
數(shù),使ab.
28、平行于同一個(gè)平面的向量稱(chēng)為共面向量.
29、向量共面定理:空間一點(diǎn)位于平面C內(nèi)的充要條件是存在有序?qū)崝?shù)對(duì)x,y,使
xyC;xyC;或?qū)臻g任一定點(diǎn),有或若四點(diǎn),,,C共面,則xyzCxyz1.
30、已知兩個(gè)非零向量a和b,在空間任取一點(diǎn),作a,b,則稱(chēng)為向量a,b的夾角,記作a,b.兩個(gè)向量夾角的取值范圍是:a,b0,.
知向量a、b為鄰邊作平行四邊形C,則以起
點(diǎn)的對(duì)角線(xiàn)C就是a與b的和,這種求向量和的方
法,稱(chēng)為向量加法的平行四邊形法則.
31、對(duì)于兩個(gè)非零向量a和b,若a,b,則向量a,b互相垂直,記作ab.
2第3頁(yè)共5頁(yè)
稱(chēng)為a,b的數(shù)量積,記作ab.即32、已知兩個(gè)非零向量a和b,則abcosa,bababcosa,b.零向量與任何向量的數(shù)量積為0.
33、ab等于a的長(zhǎng)度a與b在a的方向上的投影bcosa,b的乘積.
39、設(shè)e1,e2,e3為有公共起點(diǎn)的三個(gè)兩兩垂直的單位向量(稱(chēng)它們?yōu)閱挝徽换祝,以e1,e2,e3的公共起點(diǎn)為原點(diǎn),分別以e1,e2,e3的方向?yàn)閤軸,y軸,z軸的正方向建立空
間直角坐標(biāo)系xyz.則對(duì)于空間任意一個(gè)向量p,一定可以把它平移,使它的起點(diǎn)與原點(diǎn)重
34、若a,b為非零向量,e為單位向量,則有1eaaeacosa,e;
合,得到向量p.存在有序?qū)崝?shù)組x,y,z,使得pxe1ye2ze3.把x,y,z稱(chēng)作向量p在單位正交基底e1,e2,e3下的坐標(biāo),記作px,y,z.此時(shí),向量p的坐標(biāo)是點(diǎn)
2aba與b同向,aaa,aaa;2abab0;3ababa與b反向ab4cosa,b;5abab.
ab在空間直角坐標(biāo)系xyz中的坐標(biāo)x,y,z.
bx,y,za40、設(shè)ax1,y1,z1,222,則1bx1x2,y1y2,z1z2.2abx1x2,y1y2,z1z2.
35、向量數(shù)乘積的運(yùn)算律:1abba;2ababab;
3abcacbc.
3ax1,y1,z1.
4abx1x2y1y2z1z2.
5若a、b為非零向量,則abab0x1x2y1y2z1z20.6若b0,則a//babx1x2,y1y2,z1z2.a(chǎn)aax12y12z12.
x1x2y1y2z1z2ab8.cosa,b222222abx1y1z1x2y2z236、若i,j,k是空間三個(gè)兩兩垂直的向量,則對(duì)空間任一向量p,存在有序?qū)崝?shù)組x,y,z,使得pxiyjzk,稱(chēng)xi,yj,zk為向量p在i,j,k上的分量.
37、空間向量基本定理:若三個(gè)向量a,b,c不共面,則對(duì)空間任一向量p,存在實(shí)數(shù)組x,y,z,使得pxaybzc.
738、若三個(gè)向量a,b,c不共面,則所有空間向量組成的集合是
ppxaybzc,x,y,zR.這個(gè)集合可看作是由向量a,b,c生成的,
9x1,y1,z1,x2,y2,z2,則d量稱(chēng)為點(diǎn)的位置向量.
x2x1y2y1z2z1222.
a,b,c稱(chēng)為空間的一個(gè)基底,a,b,c稱(chēng)為基向量.空間任意三個(gè)不共面的向量都可以構(gòu)
41、在空間中,取一定點(diǎn)作為基點(diǎn),那么空間中任意一點(diǎn)的位置可以用向量來(lái)表示.向
成空間的一個(gè)基底.
第4頁(yè)共5頁(yè)
42、空間中任意一條直線(xiàn)l的位置可以由l上一個(gè)定點(diǎn)以及一個(gè)定方向確定.點(diǎn)是直線(xiàn)l上
一點(diǎn),向量a表示直線(xiàn)l的方向向量,則對(duì)于直線(xiàn)l上的任意一點(diǎn),有ta,這樣點(diǎn)和
向量a不僅可以確定直線(xiàn)l的位置,還可以具體表示出直線(xiàn)l上的任意一點(diǎn).
43、空間中平面的位置可以由內(nèi)的兩條相交直線(xiàn)來(lái)確定.設(shè)這兩條相交直線(xiàn)相交于點(diǎn),
它們的方向向量分別為a,b.為平面上任意一點(diǎn),存在有序?qū)崝?shù)對(duì)x,y,使得xayb,這樣點(diǎn)與向量a,b就確定了平面的位置.
44、直線(xiàn)l垂直,取直線(xiàn)l的方向向量a,則向量a稱(chēng)為平面的法向量.
45、若空間不重合兩條直線(xiàn)a,b的方向向量分別為a,b,則a//ba//babR,ababab0.
46、若直線(xiàn)a的方向向量為a,平面的法向量為n,且a,則a//a//
anan0,aaa//nan.
47、若空間不重合的兩個(gè)平面,的法向量分別為a,b,則//a//b
51、點(diǎn)與點(diǎn)之間的距離可以轉(zhuǎn)化為兩點(diǎn)對(duì)應(yīng)向量的模計(jì)算.
52、在直線(xiàn)l上找一點(diǎn),過(guò)定點(diǎn)且垂直于直線(xiàn)l的向量為n,則定點(diǎn)到直線(xiàn)l的距離為
ndcos,n.
n53、點(diǎn)是平面外一點(diǎn),是平面內(nèi)的一定點(diǎn),n為平面的一個(gè)法向量,則點(diǎn)到平面
n的距離為dcos,n.
nab,abab0.
48、設(shè)異面直線(xiàn)a,b的夾角為,方向向量為a,b,其夾角為,則有
abcoscos.
ab49、設(shè)直線(xiàn)l的方向向量為l,平面的法向量為n,l與所成的角為,l與n的夾角為,
ln則有sincos.
ln50、設(shè)n1,n2是二面角l的兩個(gè)面,的法向量,則向量n1,n2的夾角(或其補(bǔ)角)
n1n2就是二面角的平面角的大。舳娼莑的平面角為,則cos.
n1n2第5頁(yè)共5頁(yè)
友情提示:本文中關(guān)于《高中數(shù)學(xué)選修2-1知識(shí)點(diǎn)總結(jié)(考前復(fù)習(xí)必備)》給出的范例僅供您參考拓展思維使用,高中數(shù)學(xué)選修2-1知識(shí)點(diǎn)總結(jié)(考前復(fù)習(xí)必備):該篇文章建議您自主創(chuàng)作。
來(lái)源:網(wǎng)絡(luò)整理 免責(zé)聲明:本文僅限學(xué)習(xí)分享,如產(chǎn)生版權(quán)問(wèn)題,請(qǐng)聯(lián)系我們及時(shí)刪除。