北師大版九年級(jí)數(shù)學(xué)上冊(cè)知識(shí)點(diǎn)總結(jié)
九(上)數(shù)學(xué)知識(shí)點(diǎn)總結(jié)
第一章證明(一)
1、你能證明它嗎?
(1)三角形全等的性質(zhì)及判定
全等三角形的對(duì)應(yīng)邊相等,對(duì)應(yīng)角也相等判定:SSS、SAS、ASA、AAS、(2)等腰三角形的判定、性質(zhì)及推論
性質(zhì):等腰三角形的兩個(gè)底角相等(等邊對(duì)等角)
判定:有兩個(gè)角相等的三角形是等腰三角形(等角對(duì)等邊)
推論:等腰三角形頂角的平分線、底邊上的中線、底邊上的高互相重合(即“三線合一”)(3)等邊三角形的性質(zhì)及判定定理
性質(zhì)定理:等邊三角形的三個(gè)角都相等,并且每個(gè)角都等于60度;等邊三角形的三條邊都滿足“三線合一”的性質(zhì);等邊三角形是軸對(duì)稱圖形,有3條對(duì)稱軸。
判定定理:有一個(gè)角是60度的等腰三角形是等邊三角形;蛘呷齻(gè)角都相等的三角形是等邊三角形。
(4)含30度的直角三角形的邊的性質(zhì)
定理:在直角三角形中,如果一個(gè)銳角等于30度,那么它所對(duì)的直角邊等于斜邊的一半。2、直角三角形
(1)勾股定理及其逆定理
定理:直角三角形的兩條直角邊的平方和等于斜邊的平方。
逆定理:如果三角形兩邊的平方和等于第三邊的平方,那么這個(gè)三角形是直角三角形。(2)命題包括已知和結(jié)論兩部分;逆命題是將倒是的已知和結(jié)論交換;正確的逆命題就是逆定理。
(3)直角三角形全等的判定定理
定理:斜邊和一條直角邊對(duì)應(yīng)相等的兩個(gè)直角三角形全等(HL)3、線段的垂直平分線
(1)線段垂直平分線的性質(zhì)及判定
性質(zhì):線段垂直平分線上的點(diǎn)到這條線段兩個(gè)端點(diǎn)的距離相等。
判定:到一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn)在這條線段的垂直平分線上。(2)三角形三邊的垂直平分線的性質(zhì)
三角形三條邊的垂直平分線相交于一點(diǎn),并且這一點(diǎn)到三個(gè)頂點(diǎn)的距離相等。(3)如何用尺規(guī)作圖法作線段的垂直平分線
分別以線段的兩個(gè)端點(diǎn)A、B為圓心,以大于AB的一半長(zhǎng)為半徑作弧,兩弧交于點(diǎn)M、N;作直線MN,則直線MN就是線段AB的垂直平分線。4、角平分線
(1)角平分線的性質(zhì)及判定定理
性質(zhì):角平分線上的點(diǎn)到這個(gè)角的兩邊的距離相等;
判定:在一個(gè)角的內(nèi)部,且到角的兩邊的距離相等的點(diǎn),在這個(gè)角的平分線上。(2)三角形三條角平分線的性質(zhì)定理
性質(zhì):三角形的三條角平分線相交于一點(diǎn),并且這一點(diǎn)到三條邊的距離相等。(3)如何用尺規(guī)作圖法作出角平分線
第二章一元二次方程
1、花邊有多寬
(1)整式方程及一元二次方程的概念
整式方程:方程兩邊都是關(guān)于未知數(shù)的整式;一元二次方程:只含有一個(gè)未知數(shù)x的整式方程,并且都可以化作ax2+bx+c=0(a,b,c為常數(shù),a≠0)的形式。
(2)一元二次方程的一般式及各系數(shù)含義
一般式:ax2+bx+c=0(a,b,c為常數(shù),a≠0),其中,a是二次項(xiàng)系數(shù),b是一次項(xiàng)系數(shù),c是常數(shù)項(xiàng)。2、配方法
(1)直接開平方法的定義
利用平方根的定義直接開平方求一元二次方程的解的方法叫直接開平方法。(2)配方法的步驟和方法
一、移項(xiàng),把方程的常數(shù)項(xiàng)移到等號(hào)右邊;二、配,方程兩邊都加上一次項(xiàng)系數(shù)的一半的平方,把原方程化為(x+m)2=n(n≥0)的形式;三、直接用開平方法求出它的解。3、公式法
(1)求根公式
bb24acb-4ac≥0時(shí),x=
2a2
(2)求一元二次方程的一般式及各系數(shù)的含義
2一、將方程化為一元二次方程的一般ax2+bx+c=0(a,b,c為常數(shù),a≠0);二、計(jì)算b-4ac
2的值,當(dāng)b-4ac≥0時(shí),方程有實(shí)數(shù)根,否則方程無(wú)實(shí)數(shù)根;三、代入求根公式,求出方程的根;四、寫出方程的兩個(gè)根。4、分解因式法
(1)分解因式的概念
當(dāng)一元二次方程的一邊為0,而另一邊易于分解成兩個(gè)一次因式的乘積時(shí),根據(jù)ab=0,那么a=0或b=0,這種解一元二次方程的方法稱為分解因式。(2)分解因式法解一元二次方程的一般步驟
一、將方程右邊化為零;二、將方程左邊分解為兩個(gè)一次因式的乘積;三、設(shè)每一個(gè)因式分別為0,得到兩個(gè)一元二次方程;四、解這兩個(gè)一元二次方程,它們的解就是原方程的解。5、為什么是0.618(1)什么叫黃金比
線段AB上一點(diǎn)C分線段AB成兩條線段AC,BC,若黃金分割點(diǎn),其中
ACBC=,則C點(diǎn)叫線段AB的ABACAC叫黃金比,其值為0.618。AB(2)列一元二次方程解應(yīng)用題的一般步驟
一、審題;二、設(shè)求知數(shù);三、列代數(shù)式;四、列方程;五、解方程;六、檢驗(yàn);七、答
第三章證明(三)
1、平行四邊行
(1)平行四邊形的定義、性質(zhì)及判定定義:兩組對(duì)邊分別平行的四邊形叫平行四邊形
性質(zhì):平行四邊形的對(duì)邊分別平行;平行四邊形的對(duì)邊分別相等;平行四邊形的對(duì)角分別相等;平行四邊形的對(duì)角線互相平分。判定:兩組對(duì)邊分別相等的四邊形是平行四邊形;一組對(duì)邊平行且相等的四邊形是平行四邊形;兩組對(duì)角分別相等的四邊形是平行四邊形;對(duì)角線互相平分的四邊形是平行四邊行。(2)等腰梯形的性質(zhì)及判定
性質(zhì):等腰梯形在同一底上的兩個(gè)角相等;等腰梯形的兩條對(duì)角線相等。
判定:同一底上的兩個(gè)角相等的梯形是等腰梯形;對(duì)角線相等的梯形是等腰梯形。(3)三角形中位線定義及性質(zhì)
定義:連接三角形兩邊中點(diǎn)的線段叫做三角形的中位線。性質(zhì):三角形的中位線平行于第三邊,且等于第三邊的一半。2、特殊平行四邊形
(1)矩形、菱形、正方形、直角三角形的性質(zhì)及判定
第四章視圖與投影
1、視圖
(1)三視圖的種類及三種視圖之間的關(guān)系三視圖有主視圖、左視圖和俯視圖;三種視圖間的關(guān)系:主、俯長(zhǎng)對(duì)正;主、左高平齊;俯、左寬相等;(2)會(huì)畫圓柱、圓錐、球的三視圖
2、太陽(yáng)光與影子
(1)投影與平行投影的含義、平行投影的性質(zhì)
一般地,用光線照射物體,在某個(gè)平面上得到的影子叫做投影;由平行光線形成的投影是平行投影。
平行投影的性質(zhì):物體上的點(diǎn)以及影子上的對(duì)應(yīng)點(diǎn)的連線互相平行;當(dāng)物體與投影面平行時(shí),所形成的影子與物體全等;同一時(shí)刻,在平行光線下,互相平行的物體的高度與影子長(zhǎng)度的比值相等。
(2)物體影長(zhǎng)的變化規(guī)律,會(huì)將影長(zhǎng)與相似結(jié)合起來(lái)進(jìn)行計(jì)算
在太陽(yáng)光的照射下,不同時(shí)刻,物體影子的長(zhǎng)短也不一樣,早晚影子長(zhǎng),中午影子短。(3)平行投影與視圖之間的關(guān)系
視圖實(shí)際上就是該物體在某一平行光線下的投影。3、燈光與影子
(1)中心投影的概念及應(yīng)用,區(qū)別平行投影與中心投影從一點(diǎn)發(fā)出的光線形成的投影稱為中心投影。(2)視點(diǎn)、視線與盲區(qū)的概念
眼睛的位置稱為視點(diǎn);由視點(diǎn)發(fā)出的線稱為視線;眼睛看不到的地方稱為盲區(qū)。
第五章反比例函數(shù)
1、反比例函數(shù)
(1)反比例函數(shù)的概念
一般地,如果兩個(gè)變量x,y之間的關(guān)系可以表示成y=函數(shù)。反比例函數(shù)的自變量x不能為0。(2)掌握求反比例函數(shù)的解析式的方法
將一組x,y的值代入解析式中確定k的值即可。
k的形式,那么稱y是x的反比例x2、反比例函數(shù)的圖象與性質(zhì)(1)反比例函數(shù)圖象的畫法
一般采用描點(diǎn)法:先列表,再描點(diǎn),再連線。
(2)反比例函數(shù)的圖象及性質(zhì),其表達(dá)式與圖象的關(guān)系,函數(shù)值大小的比較(表5-1)3、反比例函數(shù)的應(yīng)用
(1)用反比例函數(shù)解決實(shí)際問(wèn)題的一般思路
1、根據(jù)問(wèn)題情境,設(shè)出所求的反比例函數(shù)表達(dá)式;
2、由問(wèn)題中的已知數(shù)據(jù),代入所求表達(dá)式,列出方程(或方程組),求出方程的解,確定出待定系數(shù)的值,從而確定函數(shù)表達(dá)式;3、根據(jù)函數(shù)表達(dá)式,去解決實(shí)際問(wèn)題。
(2)反比例函數(shù)與正比例函數(shù)的區(qū)別及綜合應(yīng)用(表5-1)
表5-1
擴(kuò)展閱讀:北師大版九年級(jí)數(shù)學(xué)上冊(cè)知識(shí)點(diǎn)總結(jié)
九(上)數(shù)學(xué)知識(shí)點(diǎn)答案
第一章證明(一)
1、你能證明它嗎?
(1)三角形全等的性質(zhì)及判定
全等三角形的對(duì)應(yīng)邊相等,對(duì)應(yīng)角也相等判定:SSS、SAS、ASA、AAS、
(2)等腰三角形的判定、性質(zhì)及推論
性質(zhì):等腰三角形的兩個(gè)底角相等(等邊對(duì)等角)
判定:有兩個(gè)角相等的三角形是等腰三角形(等角對(duì)等邊)
推論:等腰三角形頂角的平分線、底邊上的中線、底邊上的高互相重合(即“三線合一”)(3)等邊三角形的性質(zhì)及判定定理
性質(zhì)定理:等邊三角形的三個(gè)角都相等,并且每個(gè)角都等于60度;等邊三角形的三條邊都滿足“三線合一”的性質(zhì);等邊三角形是軸對(duì)稱圖形,有3條對(duì)稱軸。
判定定理:有一個(gè)角是60度的等腰三角形是等邊三角形;蛘呷齻(gè)角都相等的三角形是等邊三角形。
(4)含30度的直角三角形的邊的性質(zhì)
定理:在直角三角形中,如果一個(gè)銳角等于30度,那么它所對(duì)的直角邊等于斜邊的一半。2、直角三角形
(1)勾股定理及其逆定理
定理:直角三角形的兩條直角邊的平方和等于斜邊的平方。
逆定理:如果三角形兩邊的平方和等于第三邊的平方,那么這個(gè)三角形是直角三角形。(2)命題包括已知和結(jié)論兩部分;逆命題是將倒是的已知和結(jié)論交換;正確的逆命題就是逆定理。
(3)直角三角形全等的判定定理
定理:斜邊和一條直角邊對(duì)應(yīng)相等的兩個(gè)直角三角形全等(HL)3、線段的垂直平分線
(1)線段垂直平分線的性質(zhì)及判定
性質(zhì):線段垂直平分線上的點(diǎn)到這條線段兩個(gè)端點(diǎn)的距離相等。
判定:到一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn)在這條線段的垂直平分線上。(2)三角形三邊的垂直平分線的性質(zhì)
三角形三條邊的垂直平分線相交于一點(diǎn),并且這一點(diǎn)到三個(gè)頂點(diǎn)的距離相等。
(3)如何用尺規(guī)作圖法作線段的垂直平分線
分別以線段的兩個(gè)端點(diǎn)A、B為圓心,以大于AB的一半長(zhǎng)為半徑作弧,兩弧交于點(diǎn)M、N;作直線MN,則直線MN就是線段AB的垂直平分線。4、角平分線
(1)角平分線的性質(zhì)及判定定理
性質(zhì):角平分線上的點(diǎn)到這個(gè)角的兩邊的距離相等;
判定:在一個(gè)角的內(nèi)部,且到角的兩邊的距離相等的點(diǎn),在這個(gè)角的平分線上。(2)三角形三條角平分線的性質(zhì)定理
性質(zhì):三角形的三條角平分線相交于一點(diǎn),并且這一點(diǎn)到三條邊的距離相等。(3)如何用尺規(guī)作圖法作出角平分線
第二章一元二次方程
1、花邊有多寬
(1)整式方程及一元二次方程的概念
整式方程:方程兩邊都是關(guān)于未知數(shù)的整式;
一元二次方程:只含有一個(gè)未知數(shù)x的整式方程,并且都可以化作ax+bx+c=0(a,b,c為常數(shù),a≠0)的形式。
(2)一元二次方程的一般式及各系數(shù)含義
2一般式:ax+bx+c=0(a,b,c為常數(shù),a≠0),其中,a是二次項(xiàng)系數(shù),b是一次項(xiàng)系數(shù),c是常數(shù)項(xiàng)。
2、配方法
(1)直接開平方法的定義
利用平方根的定義直接開平方求一元二次方程的解的方法叫直接開平方法。(2)配方法的步驟和方法
一、移項(xiàng),把方程的常數(shù)項(xiàng)移到等號(hào)右邊;二、配,方程兩邊都加上一次項(xiàng)系數(shù)的一半的平方,把原方程化為(x+m)2=n(n≥0)的形式;三、直接用開平方法求出它的解。3、公式法
(1)求根公式b-4ac≥0時(shí),x=
22bb4ac2a2
(2)求一元二次方程的一般式及各系數(shù)的含義
一、將方程化為一元二次方程的一般ax2+bx+c=0(a,b,c為常數(shù),a≠0);二、計(jì)算b2-4ac的值,當(dāng)b2-4ac≥0時(shí),方程有實(shí)數(shù)根,否則方程無(wú)實(shí)數(shù)根;三、代入求根公式,求出方程的根;四、寫出方程的兩個(gè)根。4、分解因式法
(1)分解因式的概念
當(dāng)一元二次方程的一邊為0,而另一邊易于分解成兩個(gè)一次因式的乘積時(shí),根據(jù)ab=0,那么a=0或b=0,這種解一元二次方程的方法稱為分解因式。(2)分解因式法解一元二次方程的一般步驟
一、將方程右邊化為零;二、將方程左邊分解為兩個(gè)一次因式的乘積;三、設(shè)每一個(gè)因式分別為0,得到兩個(gè)一元二次方程;四、解這兩個(gè)一元二次方程,它們的解就是原方程的解。5、為什么是0.618(1)什么叫黃金比
線段AB上一點(diǎn)C分線段AB成兩條線段AC,BC,若黃金分割點(diǎn),其中
ACABACAB=
BCAC,則C點(diǎn)叫線段AB的
叫黃金比,其值為0.618。
(2)列一元二次方程解應(yīng)用題的一般步驟
一、審題;二、設(shè)求知數(shù);三、列代數(shù)式;四、列方程;五、解方程;六、檢驗(yàn);七、答
第三章證明(三)
1、平行四邊行
(1)平行四邊形的定義、性質(zhì)及判定定義:兩組對(duì)邊分別平行的四邊形叫平行四邊形
性質(zhì):平行四邊形的對(duì)邊分別平行;平行四邊形的對(duì)邊分別相等;平行四邊形的對(duì)角分別相等;平行四邊形的對(duì)角線互相平分。判定:兩組對(duì)邊分別相等的四邊形是平行四邊形;一組對(duì)邊平行且相等的四邊形是平行四邊形;兩組對(duì)角分別相等的四邊形是平行四邊形;對(duì)角線互相平分的四邊形是平行四邊行。(2)等腰梯形的性質(zhì)及判定
性質(zhì):等腰梯形在同一底上的兩個(gè)角相等;等腰梯形的兩條對(duì)角線相等。
判定:同一底上的兩個(gè)角相等的梯形是等腰梯形;對(duì)角線相等的梯形是等腰梯形。(3)三角形中位線定義及性質(zhì)
定義:連接三角形兩邊中點(diǎn)的線段叫做三角形的中位線。性質(zhì):三角形的中位線平行于第三邊,且等于第三邊的一半。2、特殊平行四邊形
(1)矩形、菱形、正方形、直角三角形的性質(zhì)及判定
第四章視圖與投影
1、視圖
(1)三視圖的種類及三種視圖之間的關(guān)系三視圖有主視圖、左視圖和俯視圖;三種視圖間的關(guān)系:主、俯長(zhǎng)對(duì)正;主、左高平齊;俯、左寬相等;(2)會(huì)畫圓柱、圓錐、球的三視圖
2、太陽(yáng)光與影子
(1)投影與平行投影的含義、平行投影的性質(zhì)
一般地,用光線照射物體,在某個(gè)平面上得到的影子叫做投影;由平行光線形成的投影是平行投影。
平行投影的性質(zhì):物體上的點(diǎn)以及影子上的對(duì)應(yīng)點(diǎn)的連線互相平行;當(dāng)物體與投影面平行時(shí),所形成的影子與物體全等;同一時(shí)刻,在平行光線下,互相平行的物體的高度與影子長(zhǎng)度的比值相等。
(2)物體影長(zhǎng)的變化規(guī)律,會(huì)將影長(zhǎng)與相似結(jié)合起來(lái)進(jìn)行計(jì)算
在太陽(yáng)光的照射下,不同時(shí)刻,物體影子的長(zhǎng)短也不一樣,早晚影子長(zhǎng),中午影子短。(3)平行投影與視圖之間的關(guān)系
視圖實(shí)際上就是該物體在某一平行光線下的投影。3、燈光與影子
(1)中心投影的概念及應(yīng)用,區(qū)別平行投影與中心投影從一點(diǎn)發(fā)出的光線形成的投影稱為中心投影。(2)視點(diǎn)、視線與盲區(qū)的概念
眼睛的位置稱為視點(diǎn);由視點(diǎn)發(fā)出的線稱為視線;眼睛看不到的地方稱為盲區(qū)。
第五章反比例函數(shù)
1、反比例函數(shù)
(1)反比例函數(shù)的概念
一般地,如果兩個(gè)變量x,y之間的關(guān)系可以表示成y=函數(shù)。反比例函數(shù)的自變量x不能為0。(2)掌握求反比例函數(shù)的解析式的方法
將一組x,y的值代入解析式中確定k的值即可。
kx的形式,那么稱y是x的反比例2、反比例函數(shù)的圖象與性質(zhì)(1)反比例函數(shù)圖象的畫法
一般采用描點(diǎn)法:先列表,再描點(diǎn),再連線。
(2)反比例函數(shù)的圖象及性質(zhì),其表達(dá)式與圖象的關(guān)系,函數(shù)值大小的比較(表5-1)3、反比例函數(shù)的應(yīng)用
(1)用反比例函數(shù)解決實(shí)際問(wèn)題的一般思路
1、根據(jù)問(wèn)題情境,設(shè)出所求的反比例函數(shù)表達(dá)式;
2、由問(wèn)題中的已知數(shù)據(jù),代入所求表達(dá)式,列出方程(或方程組),求出方程的解,確定出待定系數(shù)的值,從而確定函數(shù)表達(dá)式;3、根據(jù)函數(shù)表達(dá)式,去解決實(shí)際問(wèn)題。
(2)反比例函數(shù)與正比例函數(shù)的區(qū)別及綜合應(yīng)用(表5-1)
表5-1
友情提示:本文中關(guān)于《北師大版九年級(jí)數(shù)學(xué)上冊(cè)知識(shí)點(diǎn)總結(jié)》給出的范例僅供您參考拓展思維使用,北師大版九年級(jí)數(shù)學(xué)上冊(cè)知識(shí)點(diǎn)總結(jié):該篇文章建議您自主創(chuàng)作。
來(lái)源:網(wǎng)絡(luò)整理 免責(zé)聲明:本文僅限學(xué)習(xí)分享,如產(chǎn)生版權(quán)問(wèn)題,請(qǐng)聯(lián)系我們及時(shí)刪除。