一次函數(shù)知識點總結(jié)
一次函數(shù)知識點總結(jié)
【基本要點】
1、變量:在一個變化過程中可以取不同數(shù)值的量。常量:在一個變化過程中只能取同一數(shù)值的量。
例題:在勻速運動公式svt中,v表示速度,t表示時間,s表示在時間t內(nèi)所走的路程,則變量是________,常量是_______。在圓的周長公式C=2πr中,變量是________,常量是_________.
2、函數(shù):一般的,在一個變化過程中,如果有兩個變量x和y,并且對于x的每一個確定的值,y都有唯一確定的值與其
對應,那么我們就把x稱為自變量,把y稱為因變量,y是x的函數(shù)。注:這是課本對于函數(shù)的定義,在理解與實際運用中我們要注意以下幾點:1、函數(shù)只能描述兩個變量之間的關系,多一個少一個變量都是不對的;如:y=xz中有三個變量,就不是函數(shù);y=0中只有一個變量,也不是函數(shù);而y=0(x>0)卻是函數(shù),因為括號中標明了自變量的取值范圍;2、當自變量去每一個確定的值時因變量只能取唯一確定的值相對應,反之,當因變量取每一個確定的值時自變量可以去若干個值相對應;因為這兩個變量有先變與后變的問題,讓后變的先取一個值,先變的就不一定只取一個值;3、我們只能說函數(shù)值是自變量的函數(shù),或用自變量來表示函數(shù)值,如:a是b的函數(shù)就說明a是函數(shù)值,b是自變量;用y表示x就說明y是自變量,x是函數(shù)值;任何函數(shù)都要標明誰是誰的函數(shù),不能隨便說一個解析式是不是函數(shù),如:Y=x2,只能說y是x的函數(shù),就不能說x是y的函數(shù);4、函數(shù)解析式的表示:只有函數(shù)值寫在等號左邊,含有自變量的式子寫在等號右邊;注意不能寫成2y=3x-3或y2=3x-3的形式;5、任何函數(shù)都包含自變量的取值范圍,如果沒指明說明自變量的取值范圍是任意實數(shù)。自變量的取值范圍從以下幾個方面把握:(1)關系式為整式時,函數(shù)定義域為全體實數(shù);(2)關系式含有分式時,分式的分母不等于零;(3)關系式含有二次根式時,被開放方數(shù)大于等于零;(4)關系式中含有指數(shù)為零的式子時,底數(shù)不等于零;(5)實際問題中,函數(shù)定義域還要和實際情況相符合,使之有意義。例題:寫出下列函數(shù)中自變量x的取值范圍
y=2x___________.y=1___________.y=4x2___________.y=x2x2___________.x23、函數(shù)的圖像
一般來說,對于一個函數(shù),如果把自變量與函數(shù)的每對對應值分別作為點的橫、縱坐標,那么坐標平面內(nèi)由這些點組成的圖形,就是這個函數(shù)的圖象.
4、函數(shù)解析式:用含有表示自變量的字母的代數(shù)式表示因變量的式子叫做解析式。5、描點法畫函數(shù)圖形的一般步驟
第一步:列表(表中給出一些自變量的值及其對應的函數(shù)值);
第二步:描點(在直角坐標系中,以自變量的值為橫坐標,相應的函數(shù)值為縱坐標,描出表格中數(shù)值對應的各點);第三步:連線(按照橫坐標由小到大的順序把所描出的各點用平滑曲線連接起來)。6、函數(shù)的表示方法
列表法:一目了然,使用起來方便,但列出的對應值是有限的,不易看出自變量與函數(shù)之間的對應規(guī)律。
解析式法:簡單明了,能夠準確地反映整個變化過程中自變量與函數(shù)之間的相依關系,但有些實際問題中的函數(shù)關系,不能用解析式表示。
圖象法:形象直觀,但只能近似地表達兩個變量之間的函數(shù)關系。7、正比例函數(shù)及性質(zhì)
一般地,形如y=kx(k是常數(shù),k≠0)的函數(shù)叫做正比例函數(shù),其中k叫做比例系數(shù).注:正比例函數(shù)一般形式y(tǒng)=kx(k不為零)①k不為零②x指數(shù)為1③b取零
當k>0時,直線y=kx經(jīng)過三、一象限,從左向右上升,即隨x的增大y也增大;當k0時,圖像經(jīng)過一、三象限;k0,y隨x的增大而增大;k0時,向上平移;當b0,圖象經(jīng)過第一、三象限;k0,圖象經(jīng)過第一、二象限;b0,y隨x的增大而增大;k0時,將直線y=kx的圖象向上平移b個單位;
當by2,則x1與x2的大小關系
是()A.x1>x2B.x10,且y1>y2。根據(jù)一次函數(shù)的性質(zhì)“當k>0時,y隨x的增大而增大”,得x1>x2。故選A。2、若m<0,n>0,則一次函數(shù)y=mx+n的圖象不經(jīng)過()
A.第一象限B.第二象限C.第三象限D(zhuǎn).第四象限
3、一次函數(shù)y=kx+b滿足kb>0,且y隨x的增大而減小,則此函數(shù)的圖象不經(jīng)過()A.第一象限B.第二象限C.第三象限D(zhuǎn).第四象限
解:由kb>0,知k、b同號。因為y隨x的增大而減小,所以k任何一元一次方程到可以轉(zhuǎn)化為ax+b=0(a,b為常數(shù),a≠0)的形式,所以解一元一次方程可以轉(zhuǎn)化為:當某個一次函數(shù)的值為0時,求相應的自變量的值.從圖象上看,相當于已知直線y=ax+b確定它與x軸的交點的橫坐標的值.12、一次函數(shù)與一元一次不等式的關系
任何一個一元一次不等式都可以轉(zhuǎn)化為ax+b>0或ax+b
擴展閱讀:初二數(shù)學一次函數(shù)知識點總結(jié)
一次函數(shù)知識點總結(jié)
基本概念
1、變量:在一個變化過程中可以取不同數(shù)值的量。常量:在一個變化過程中只能取同一數(shù)值的量。
例題:在勻速運動公式svt中,v表示速度,t表示時間,s表示在時間t內(nèi)所走的路程,則變量是________,常量是_______。在圓的周長公式C=2πr中,變量是________,常量是_________.
2、函數(shù):一般的,在一個變化過程中,如果有兩個變量x和y,并且對于x的每一個確定的值,y都有唯一確定
的值與其對應,那么我們就把x稱為自變量,把y稱為因變量,y是x的函數(shù)。*判斷Y是否為X的函數(shù),只要看X取值確定的時候,Y是否有唯一確定的值與之對應
1-12
例題:下列函數(shù)(1)y=πx(2)y=2x-1(3)y=(4)y=2-3x(5)y=x-1中,是一次函數(shù)的有()
x(A)4個(B)3個(C)2個(D)1個3、定義域:一般的,一個函數(shù)的自變量允許取值的范圍,叫做這個函數(shù)的定義域。4、確定函數(shù)定義域的方法:
(1)關系式為整式時,函數(shù)定義域為全體實數(shù);(2)關系式含有分式時,分式的分母不等于零;(3)關系式含有二次根式時,被開放方數(shù)大于等于零;(4)關系式中含有指數(shù)為零的式子時,底數(shù)不等于零;(5)實際問題中,函數(shù)定義域還要和實際情況相符合,使之有意義。例題:下列函數(shù)中,自變量x的取值范圍是x≥2的是()A.y=2xB.y=1x2C.y=4xD.y=2x2x2函數(shù)y已知函數(shù)yA.52yx5中自變量x的取值范圍是___________.
1232x2,當1x1時,y的取值范圍是()
B.32y52C.
32y52D.
32y52
5、函數(shù)的圖像
一般來說,對于一個函數(shù),如果把自變量與函數(shù)的每對對應值分別作為點的橫、縱坐標,那么坐標平面內(nèi)由這些點組成的圖形,就是這個函數(shù)的圖象.
6、函數(shù)解析式:用含有表示自變量的字母的代數(shù)式表示因變量的式子叫做解析式。
7、描點法畫函數(shù)圖形的一般步驟
第一步:列表(表中給出一些自變量的值及其對應的函數(shù)值);
第二步:描點(在直角坐標系中,以自變量的值為橫坐標,相應的函數(shù)值為縱坐標,描出表格中數(shù)值對應的各點);第三步:連線(按照橫坐標由小到大的順序把所描出的各點用平滑曲線連接起來)。
8、函數(shù)的表示方法列表法:一目了然,使用起來方便,但列出的對應值是有限的,不易看出自變量與函數(shù)之間的對應規(guī)律。解析式法:簡單明了,能夠準確地反映整個變化過程中自變量與函數(shù)之間的相依關系,但有些實際問題中的函數(shù)關系,不能用解析式表示。
圖象法:形象直觀,但只能近似地表達兩個變量之間的函數(shù)關系。
9、正比例函數(shù)及性質(zhì)
一般地,形如y=kx(k是常數(shù),k≠0)的函數(shù)叫做正比例函數(shù),其中k叫做比例系數(shù).注:正比例函數(shù)一般形式y(tǒng)=kx(k不為零)①k不為零②x指數(shù)為1③b取零
當k>0時,直線y=kx經(jīng)過三、一象限,從左向右上升,即隨x的增大y也增大;當k
(2)必過點:(0,0)、(1,k)
(3)走向:k>0時,圖像經(jīng)過一、三象限;k0,y隨x的增大而增大;k0時,向上平移;當b0,圖象經(jīng)過第一、三象限;k0,圖象經(jīng)過第一、二象限;b0,y隨x的增大而增大;k0時,將直線y=kx的圖象向上平移b個單位;
當b
若直線yxa和直線yxb的交點坐標為(m,8),則ab____________.已知函數(shù)y=3x+1,當自變量增加m時,相應的函數(shù)值增加()A.3m+1B.3mC.mD.3m-1
11、一次函數(shù)y=kx+b的圖象的畫法.
根據(jù)幾何知識:經(jīng)過兩點能畫出一條直線,并且只能畫出一條直線,即兩點確定一條直線,所以畫一次函數(shù)
的圖象時,只要先描出兩點,再連成直線即可.一般情況下:是先選取它與兩坐標軸的交點:(0,b),即橫坐標或縱坐標為0的點.
.b>0經(jīng)過第一、二、三象限b0圖象從左到右上升,y隨x的增大而增大經(jīng)過第一、二、四象限經(jīng)過第二、三、四象限經(jīng)過第二、四象限k0時,向上平移;當b
16、一次函數(shù)與一元一次不等式的關系
任何一個一元一次不等式都可以轉(zhuǎn)化為ax+b>0或ax+b
友情提示:本文中關于《一次函數(shù)知識點總結(jié)》給出的范例僅供您參考拓展思維使用,一次函數(shù)知識點總結(jié):該篇文章建議您自主創(chuàng)作。
來源:網(wǎng)絡整理 免責聲明:本文僅限學習分享,如產(chǎn)生版權問題,請聯(lián)系我們及時刪除。