初三《圓》章節(jié)知識點總結(jié)201*.11.4
新初四暑期圓知識點總結(jié)周若楠
一、圓的概念
集合形式的概念:1、圓可以看作是到定點的距離等于定長的點的集合;2、圓的外部:可以看作是到定點的距離大于定長的點的集合;3、圓的內(nèi)部:可以看作是到定點的距離小于定長的點的集合軌跡形式的概念:
1、圓:到定點的距離等于定長的點的軌跡就是以定點為圓心,定長為半徑的圓;
(補充)2、垂直平分線:到線段兩端距離相等的點的軌跡是這條線段的垂直平分線(也叫中垂線);3、角的平分線:到角兩邊距離相等的點的軌跡是這個角的平分線;
4、到直線的距離相等的點的軌跡是:平行于這條直線且到這條直線的距離等于定長的兩條直線;5、到兩條平行線距離相等的點的軌跡是:平行于這兩條平行線且到兩條直線距離都相等的一條直線。
二、點與圓的位置關(guān)系
1、點在圓內(nèi)dr點C在圓內(nèi);2、點在圓上dr點B在圓上;3、點在圓外dr點A在圓外;
三、直線與圓的位置關(guān)系
1、直線與圓相離dr無交點;2、直線與圓相切dr有一個交點;3、直線與圓相交dr有兩個交點;
ArBdCdOrdd=rrd
四、圓與圓的位置關(guān)系
外離(圖1)無交點dRr;外切(圖2)有一個交點dRr;相交(圖3)有兩個交點RrdRr;內(nèi)切(圖4)有一個交點dRr;內(nèi)含(圖5)無交點dRr;
新初四暑期圓知識點總結(jié)周若楠
dR圖1rR圖2drdR圖3r
d五、垂徑定理
圖4RrdrR圖5垂徑定理:垂直于弦的直徑平分弦且平分弦所對的弧。
推論1:(1)平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條。唬2)弦的垂直平分線經(jīng)過圓心,并且平分弦所對的兩條。
(3)平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一條弧
以上共4個定理,簡稱2推3定理:此定理中共5個結(jié)論中,只要知道其中2個即可推出其它3個結(jié)論,即:①AB是直徑②ABCD③CEDE④弧BC弧BD⑤弧AC弧AD中任意2個條件推出其他3個結(jié)論。
A推論2:圓的兩條平行弦所夾的弧相等。即:在⊙O中,∵AB∥CD∴弧AC弧BD
六、圓心角定理
圓心角定理:同圓或等圓中,相等的圓心角所對的弦相等,所對的弧相等,弦心距相等。此定理也稱1推3定理,即上述四個結(jié)論中,
ECOADOBCBED只要知道其中的1個相等,則可以推出其它的3個結(jié)論,
F即:①AOBDOE;②ABDE;
③OCOF;④弧BA弧BD
AODC
-2-
B新初四暑期圓知識點總結(jié)周若楠
七、圓周角定理
1、圓周角定理:同弧所對的圓周角等于它所對的圓心的角的一半。即:∵AOB和ACB是弧AB所對的圓心角和圓周角∴AOB2ACB
BOAC2、圓周角定理的推論:
推論1:同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧是等。患矗涸凇袿中,∵C、D都是所對的圓周角∴CD
BDCOAC推論2:半圓或直徑所對的圓周角是直角;圓周角是直角所對的弧是半圓,所對的弦是直徑。即:在⊙O中,∵AB是直徑或∵C90∴C90∴AB是直徑
CBOA推論3:若三角形一邊上的中線等于這邊的一半,那么這個三角形是直角三角形。即:在△ABC中,∵OCOAOB
∴△ABC是直角三角形或C90
注:此推論實是初二年級幾何中矩形的推論:在直角三角形中斜邊上的中線等于斜邊的一半的逆定理。
八、圓內(nèi)接四邊形
圓的內(nèi)接四邊形定理:圓的內(nèi)接四邊形的對角互補,外角等于它的內(nèi)對角。即:在⊙O中,
∵四邊形ABCD是內(nèi)接四邊形
∴CBAD180BD180DAEC
九、切線的性質(zhì)與判定定理
(1)切線的判定定理:過半徑外端且垂直于半徑的直線是切線;兩個條件:過半徑外端且垂直半徑,二者缺一不可即:∵MNOA且MN過半徑OA外端
MANOBOACDBAE新初四暑期圓知識點總結(jié)周若楠
∴MN是⊙O的切線(2)性質(zhì)定理:切線垂直于過切點的半徑(如上圖)推論1:過圓心垂直于切線的直線必過切點。推論2:過切點垂直于切線的直線必過圓心。以上三個定理及推論也稱二推一定理:
即:①過圓心;②過切點;③垂直切線,三個條件中知道其中兩個條件就能推出最后一個。
十、切線長定理切線長定理:
從圓外一點引圓的兩條切線,它們的切線長相等,這點和圓心的連線平分兩條切線的夾角。即:∵PA、PB是的兩條切線∴PAPBPO平分BPA
PBO
十一、圓冪定理(此定理需要掌握,課本沒有,可能做題要涉及)(1)相交弦定理:圓內(nèi)兩弦相交,交點分得的兩條線段的乘積相等。即:在⊙O中,∵弦AB、CD相交于點P,∴PAPBPCPD
CBOPADA(2)推論:如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的兩條線段的比例中項。即:在⊙O中,∵直徑ABCD,
BCOEAD∴CEAEBE
(3)切割線定理:從圓外一點引圓的切線和割線,切線長是這點到割線與圓交點的兩條線段長的比例中項。
PD2AEO即:在⊙O中,∵PA是切線,PB是割線∴PAPCPB
2CB(4)割線定理:從圓外一點引圓的兩條割線,這一點到每條割線與圓的交點的兩條線段長的積相等(如上圖)。即:在⊙O中,∵PB、PE是割線∴PCPBPDPE
wenku_5({"font":{"46f90e224b35eefdc8d3332a0010005":"宋體","46f90e224b35eefdc8d3332a00201*5":"宋體","46f90e224b35eefdc8d3332a0030005":"TimesNewRomanBold","46f90e224b35eefdc8d3332a0040005":"TimesNewRoman","46f90e224b35eefdc8d3332a0050005":"新宋體","46f90e224b35eefdc8d3332a0060005":"新宋體","46f90e224b35eefdc8d3332a0070005":"Symbol","46f90e224b35eefdc8d3332a0080005":"TimesNewRomanItalic","46f90e224b35eefdc8d3332a0090005":"Arial"},"style":[{"t":"style","c":[1,0],"s":{"font-size":"22.5"}},{"t":"style","c":[1],"s":{"font-family":"46f90e224b35eefdc8d3332a0010005"}},{"t":"style","c":[0,1,4,5,6,15,26,2],"s":{"bold":"true"}},{"t":"style","c":[0,1,2,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,3],"s":{"color":"#000000"}},{"t":"style","c":[5,6,15,26,4],"s":{"font-size":"15.84"}},{"t":"style","c":[15,26,5],"s":{"font-family":"46f90e224b35eefdc8d3332a0050005"}},{"t":"style","c":[6],"s":{"font-family":"46f90e224b35eefdc8d3332a0060005"}},{"t":"style","c":[25,33,7],"s":{"font-size":"18.126"}},{"t":"style","c":[7,13,14,17,21,23,25,27,33,37,39,40,44,46,48,50,54,8],"s":{"font-family":"46f90e224b35eefdc8d3332a0080005"}},{"t":"style","c":[7,25,33,34,9],"s":{"font-size":"18.126"}},{"t":"style","c":[7,8,13,14,17,21,23,25,27,33,37,39,40,44,46,48,50,53,54,10],"s":{"font-style":"italic"}},{"t":"style","c":[11],"s":{"font-size":"10.496"}},{"t":"style","c":[11,19,24,34,41,47,56,12],"s":{"font-family":"46f90e224b35eefdc8d3332a0040005"}},{"t":"style","c":[13],"s":{"font-size":"17.243","letter-spacing":"0.915"}},{"t":"style","c":[14],"s":{"font-size":"17.173"}},{"t":"style","c":[15],"s":{"letter-spacing":"-0.031"}},{"t":"style","c":[17,16],"s":{"font-size":"15.81"}},{"t":"style","c":[17],"s":{"font-size":"15.81"}},{"t":"style","c":[22,53,57,1新初四暑期圓知識點總結(jié)周若楠
2、圓柱:
(1)圓柱側(cè)面展開圖
S表S側(cè)2S底=2rh2r2
(2)圓柱的體積:Vr2h
(2)圓錐側(cè)面展開圖
(1)S表S側(cè)S底=Rrr2
(2)圓錐的體積:V123rh
ADD1母線長底面圓周長BCC1B1ORCArB
擴展閱讀:初三《圓》章節(jié)知識點總結(jié)201*.11.4
《圓》章節(jié)知識點復(fù)習(xí)
《圓》章節(jié)知識點復(fù)習(xí)
一、圓的概念
集合形式的概念:1、圓可以看作是到定點的距離等于定長的點的集合;2、圓的外部:可以看作是到定點的距離大于定長的點的集合;3、圓的內(nèi)部:可以看作是到定點的距離小于定長的點的集合軌跡形式的概念:
1、圓:到定點的距離等于定長的點的軌跡就是以定點為圓心,定長為半徑的圓;
(補充)2、垂直平分線:到線段兩端距離相等的點的軌跡是這條線段的垂直平分線(也叫
中垂線);
3、角的平分線:到角兩邊距離相等的點的軌跡是這個角的平分線;
4、到直線的距離相等的點的軌跡是:平行于這條直線且到這條直線的距離等于定長的兩條直線;
5、到兩條平行線距離相等的點的軌跡是:平行于這兩條平行線且到兩條直線距離都相等的一條直線。
二、點與圓的位置關(guān)系
1、點在圓內(nèi)dr點C在圓內(nèi);2、點在圓上dr點B在圓上;3、點在圓外dr點A在圓外;
三、直線與圓的位置關(guān)系
1、直線與圓相離dr無交點;2、直線與圓相切dr有一個交點;3、直線與圓相交dr有兩個交點;
ArBdCdOrdd=rrd
四、圓與圓的位置關(guān)系
《圓》章節(jié)知識點復(fù)習(xí)
外離(圖1)無交點dRr;外切(圖2)有一個交點dRr;相交(圖3)有兩個交點RrdRr;內(nèi)切(圖4)有一個交點dRr;內(nèi)含(圖5)無交點dRr;
dR圖1rRdr圖2dR圖3r
d五、垂徑定理
圖4RrdrR圖5垂徑定理:垂直于弦的直徑平分弦且平分弦所對的弧。
推論1:(1)平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧;(2)弦的垂直平分線經(jīng)過圓心,并且平分弦所對的兩條弧;
(3)平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一條弧以上共4個定理,簡稱2推3定理:此定理中共5個結(jié)論中,只要知道其中2個即可推出其它3個結(jié)論,即:
①AB是直徑②ABCD③CEDE④弧BC弧BD⑤弧AC弧AD中任意2個條件推出其他3個結(jié)論。推論2:圓的兩條平行弦所夾的弧相等。即:在⊙O中,∵AB∥CD∴弧AC弧BD
六、圓心角定理
COABCBADOED《圓》章節(jié)知識點復(fù)習(xí)
圓心角定理:同圓或等圓中,相等的圓心角所對的弦相等,所對的弧相等,弦心距相等。此定理也稱1推3定理,即上述四個結(jié)論中,
只要知道其中的1個相等,則可以推出其它的3個結(jié)論,即:①AOBDOE;②ABDE;
③OCOF;④弧BA弧BD
七、圓周角定理
1、圓周角定理:同弧所對的圓周角等于它所對的圓心的角的一半。即:∵AOB和ACB是弧AB所對的圓心角和圓周角∴AOB2ACB2、圓周角定理的推論:
推論1:同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧是等。
即:在⊙O中,∵C、D都是所對的圓周角∴CD
推論2:半圓或直徑所對的圓周角是直角;圓周角是直角所對的弧是半圓,所對的弦是直徑。
即:在⊙O中,∵AB是直徑或∵C90∴C90∴AB是直徑
推論3:若三角形一邊上的中線等于這邊的一半,那么這個三角形是直角三角形。
即:在△ABC中,∵OCOAOB
∴△ABC是直角三角形或C90
BOCAOEFDCBCBOADCBOACBOAA注:此推論實是初二年級幾何中矩形的推論:在直角三角形中斜邊上的中線等于斜邊的一半的逆定理。
八、圓內(nèi)接四邊形
《圓》章節(jié)知識點復(fù)習(xí)
圓的內(nèi)接四邊形定理:圓的內(nèi)接四邊形的對角互補,外角等于它的內(nèi)對角。即:在⊙O中,
∵四邊形ABCD是內(nèi)接四邊形
∴CBAD180BD180DAEC
九、切線的性質(zhì)與判定定理
(1)切線的判定定理:過半徑外端且垂直于半徑的直線是切線;兩個條件:過半徑外端且垂直半徑,二者缺一不可即:∵MNOA且MN過半徑OA外端∴MN是⊙O的切線
OCDBAE(2)性質(zhì)定理:切線垂直于過切點的半徑(如上圖)推論1:過圓心垂直于切線的直線必過切點。推論2:過切點垂直于切線的直線必過圓心。以上三個定理及推論也稱二推一定理:
即:①過圓心;②過切點;③垂直切線,三個條件中知道其中兩個條件就能推出最后一個。
十、切線長定理切線長定理:
從圓外一點引圓的兩條切線,它們的切線長相等,這點和圓心的連線平分兩條切線的夾角。
即:∵PA、PB是的兩條切線∴PAPB
PBMANOPO平分BPA
十一、圓冪定理
BOPCADA《圓》章節(jié)知識點復(fù)習(xí)
(1)相交弦定理:圓內(nèi)兩弦相交,交點分得的兩條線段的乘積相等。即:在⊙O中,∵弦AB、CD相交于點P,∴PAPBPCPD
(2)推論:如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的兩條線段的比例中項。
即:在⊙O中,∵直徑ABCD,∴CEAEBE
(3)切割線定理:從圓外一點引圓的切線和割線,切線長是這點到割線與圓交點的兩條線段長的比例中項。即:在⊙O中,∵PA是切線,PB是割線∴PAPCPB
(4)割線定理:從圓外一點引圓的兩條割線,這一點到每條割線與圓的交點的兩條線段長的積相等(如上圖)。
即:在⊙O中,∵PB、PE是割線∴PCPBPDPE
十二、兩圓公共弦定理
圓公共弦定理:兩圓圓心的連線垂直并且平分這兩個圓的公共弦。
如圖:O1O2垂直平分AB。
即:∵⊙O1、⊙O2相交于A、B兩點∴O1O2垂直平分AB十三、圓的公切線兩圓公切線長的計算公式:
(1)公切線長:RtO1O2C中,AB2CO12O1O22CO22;
(2)外公切線長:CO2是半徑之差;內(nèi)公切線長:CO2是半徑之和。十四、圓內(nèi)正多邊形的計算
C22CBOEDAADPCOBEAO1BO2的
ACO2BO1-5-
OBAD《圓》章節(jié)知識點復(fù)習(xí)
(1)正三角形
在⊙O中△ABC是正三角形,有關(guān)計算在RtBOD中進行:OD:BD:OB1:3:2;
(2)正四邊形
同理,四邊形的有關(guān)計算在RtOAE中進行,OE:AE:OA1:1:2:
十五、扇形、圓柱和圓錐的相關(guān)計算公式1、扇形:(1)弧長公式:lABOACEDnR;180OSlnR21(2)扇形面積公式:SlR
3602Bn:圓心角R:扇形多對應(yīng)的圓的半徑l:扇形弧長S:扇形面積
2、圓柱:
(1)圓柱側(cè)面展開圖
2S表S側(cè)2S底=2rh2r
ADD1母線長底面圓周長B(2)圓柱的體積:Vrh
(2)圓錐側(cè)面展開圖
O2CB1C1(1)S表S側(cè)S底=Rrr
212(2)圓錐的體積:Vrh
3ARCrB
友情提示:本文中關(guān)于《初三《圓》章節(jié)知識點總結(jié)201*.11.4》給出的范例僅供您參考拓展思維使用,初三《圓》章節(jié)知識點總結(jié)201*.11.4:該篇文章建議您自主創(chuàng)作。
來源:網(wǎng)絡(luò)整理 免責(zé)聲明:本文僅限學(xué)習(xí)分享,如產(chǎn)生版權(quán)問題,請聯(lián)系我們及時刪除。